Linearized Euler Equations for the Determination of Scattering Matrices for Orifice and Perforated Plate Configurations in the High Mach Number Regime
نویسندگان
چکیده
The interaction of a plane acoustic wave and a sheared flow is numerically investigated for simple orifice and perforated plate configurations in an isolated, non-resonant environment for Mach numbers up to choked conditions in the holes. Analytical derivations found in the literature are not valid in this regime due to restrictions to low Mach numbers and incompressible conditions. To allow for a systematic and detailed parameter study, a low-cost hybrid Computational Fluid Dynamic/Computational Aeroacoustic (CFD/CAA) methodology is used. For the CFD simulations, a standard k–e Reynolds-Averaged Navier–Stokes (RANS) model is employed, while the CAA simulations are based on frequency space transformed linearized Euler equations (LEE), which are discretized in a stabilized Finite Element method. Simulation times in the order of seconds per frequency allow for a detailed parameter study. From the application of the Multi Microphone Method together with the two-source location procedure, acoustic scattering matrices are calculated and compared to experimental findings showing very good agreement. The scattering properties are presented in the form of scattering matrices for a frequency range of 500–1500 Hz.
منابع مشابه
Modelling of Suddenly Expanded Flow Process in Supersonic Mach Regime using Design of Experiments and Response Surface Methodology
The present work is an attempt to model, analyze, and control the flow at the base of an abruptly expanded circular duct by using design of experiments (DOE) and response surface methodology (RSM). Tiny-jets in the form of orifice were positioned at an interval of 900, 6.5 mm from the primary axis of the main jet of the nozzle. Experiments were conducted to measure two responses namely, base pr...
متن کاملPost-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques
In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...
متن کاملA preconditioned solver for sharp resolution of multiphase flows at all Mach numbers
A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...
متن کاملHigh Accuracy Relative Motion of Spacecraft Using Linearized Time-Varying J2-Perturbed Terms
This paper presents a set of linearized equations was derived for the motion, relative to an elliptical reference orbit, of an object influenced by J2 perturbation terms. Approximate solution for simulations was used to compare these equations and the linearized keplerian equations to the exact equations. The inclusion of the linearized perturbations in the derived equations increased the high ...
متن کاملFree Vibration Analysis of a Sloping-frame: Closed-form Solution versus Finite Element Solution and Modification of the Characteristic Matrices (TECHNICAL NOTE)
This article deals with the free vibration analysis and determination of the seismic parameters of a sloping-frame which consists of three members; a horizontal, a vertical, and an inclined member. The both ends of the frame are clamped, and the members are rigidly connected at joint points. The individual members of the frame are assumed to be governed by the transverse vibration theory of an ...
متن کامل